Back to Search
Start Over
One-Pot Synthesis of Magnetic Polypyrrole Nanotubes for Adsorption of Cr(VI) in Aqueous Solution
- Source :
- Advances in Materials Science and Engineering, Vol 2021 (2021)
- Publication Year :
- 2021
- Publisher :
- Hindawi Limited, 2021.
-
Abstract
- A novel and efficient route is proposed to fabricate Fe3O4/polypyrrole (Fe3O4/PPy) nanotubes via a one-pot process. The one-pot strategy involves the synthesis of Fe3O4/PPy nanotubes by oxidative polymerization of pyrrole (Py) monomer using Fe3+ as an oxidant in the presence of methyl orange (MO) and Fe3+ used as iron source to form Fe3O4 simultaneously in basic conditions without adding any additional iron source and oxidant. The effects of Fe3+ concentration on the morphology and adsorption capacity of the Fe3O4/PPy nanotubes were investigated. The Fe3O4/PPy nanotubes exhibit a tubular structure. Fe3O4 nanoparticles are well dispersed among the PPy nanotubes. The Fe3O4/PPy nanotubes exhibit excellent magnetic property, which make them easy to separate from wastewater by magnetic separation. The diameter of the PPy nanotubes decreased with the increase of the Fe3+ concentration. The Fe3O4/PPy nanotubes showed strong adsorption capability for Cr(VI) with the maximum adsorption capacity of about 451.45 mg·g−1, which is significantly higher than bare Fe3O4 nanoparticles. Cr(VI) was adsorbed on Fe3O4/PPy nanotubes by ion exchange and chelation, where Cr(VI) was partially reduced to Cr(III) due to the existence of −NH+ on the Fe3O4/PPy nanotubes. Furthermore, the Fe3O4/PPy nanotubes are recyclable, retaining 90% of the initial removal efficiency after 5 adsorption/desorption cycles.
- Subjects :
- Materials of engineering and construction. Mechanics of materials
TA401-492
Subjects
Details
- Language :
- English
- ISSN :
- 16878442
- Volume :
- 2021
- Database :
- Directory of Open Access Journals
- Journal :
- Advances in Materials Science and Engineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3e26ff4b8ea24bf69bdf2a105d0adef7
- Document Type :
- article
- Full Text :
- https://doi.org/10.1155/2021/7068003