Back to Search Start Over

Antimicrobial susceptibilities, resistance mechanisms and molecular characteristics of toxigenic Clostridioides difficile isolates in a large teaching hospital in Chongqing, China

Authors :
Zijun Dang
Bingxue Yang
Peiwen Xia
Jinzhu Huang
Jiajia Liao
Yuqiong Li
Shiyu Tang
Qi Han
Shengli Luo
Yun Xia
Source :
Journal of Global Antimicrobial Resistance, Vol 38, Iss , Pp 198-204 (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Objectives: Clostridioides difficile ranks among the primary sources of healthcare-related infections and diarrhoea in numerous nations. We evaluated the drug susceptibility and resistance mechanisms of C. difficile isolates from a hospital in Chongqing, China, and identified resistance rates and resistance mechanisms that differed from previous findings. Methods: The toxin genes and drug resistance genes of clinical strains were detected using Polymerase Chain Reaction (PCR), and these strains were subjected to Multilocus Sequence Typing (MLST). The agar dilution technique was employed for assessing susceptibility of antibiotics. Clinical data collection was completed through a review of electronic medical records. Results: A total of 67 strains of toxin-producing C. difficile were detected. All C. difficile isolates demonstrated susceptibility to both metronidazole and vancomycin. However, resistance was observed in 8.95%, 16.42%, 56.72%, 56.72%, 31.34% and 5.97% of the isolates for tigecycline, tetracycline, clindamycin, erythromycin, moxifloxacin and rifampin, respectively. Among the strains with toxin genotypes A + B + CDT - and belonging to the ST3, six strains exhibited reduced susceptibility to tigecycline (MIC=0.5mg/L) and tetracycline (MIC=8mg/L). The tetA(P) and tetB(P) genes were present in these six strains, but were absent in tetracycline-resistant strains. Resistance genes (ermB, tetM, tetA(P) and tetB(P)) and mutations (in gyrA, gyrB, and rpoB) were identified in resistant strains. Conclusions: In contrast to prior studies, we found higher proportions of ST3 isolates with decreased tigecycline sensitivity, sharing similar resistance patterns and resistance genes. In the resistance process of tigecycline and tetracycline, the tetA(P) and tetB(P) genes may play a weak role.

Details

Language :
English
ISSN :
22137165 and 91565634
Volume :
38
Issue :
198-204
Database :
Directory of Open Access Journals
Journal :
Journal of Global Antimicrobial Resistance
Publication Type :
Academic Journal
Accession number :
edsdoj.3e1931128fc547c4873e91565634e358
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jgar.2024.07.006