Back to Search Start Over

Design, simulation, and testing of a tunable MEMS multi-threshold inertial switch

Authors :
Qiu Xu
Rodrigo T. Rocha
Yousef Algoos
Eric Feron
Mohammad I. Younis
Source :
Microsystems & Nanoengineering, Vol 10, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Publishing Group, 2024.

Abstract

Abstract This paper presents a tunable multi-threshold micro-electromechanical inertial switch with adjustable threshold capability. The demonstrated device combines the advantages of accelerometers in providing quantitative acceleration measurements and g-threshold switches in saving power when in the inactive state upon experiencing acceleration below the thresholds. The designed proof-of-concept device with two thresholds consists of a cantilever microbeam and two stationary electrodes placed at different positions in the sensing direction. The adjustable threshold capability and the effect of the shock duration on the threshold acceleration are analytically investigated using a nonlinear beam model. Results are shown for the relationships among the applied bias voltage, the duration of shock impact, and the tunable threshold. The fabricated prototypes are tested using a shock-table system. The analytical results agree with the experimental results. The designed device concept is very promising for the classification of the shock and impact loads in transportation and healthcare applications.

Details

Language :
English
ISSN :
20557434
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microsystems & Nanoengineering
Publication Type :
Academic Journal
Accession number :
edsdoj.3d9fc266cb7b4e9e95b45263ffa72633
Document Type :
article
Full Text :
https://doi.org/10.1038/s41378-024-00662-z