Back to Search Start Over

Distractor-Aware Deep Regression for Visual Tracking

Authors :
Ming Du
Yan Ding
Xiuyun Meng
Hua-Liang Wei
Yifan Zhao
Source :
Sensors, Vol 19, Iss 2, p 387 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

In recent years, regression trackers have drawn increasing attention in the visual-object tracking community due to their favorable performance and easy implementation. The tracker algorithms directly learn mapping from dense samples around the target object to Gaussian-like soft labels. However, in many real applications, when applied to test data, the extreme imbalanced distribution of training samples usually hinders the robustness and accuracy of regression trackers. In this paper, we propose a novel effective distractor-aware loss function to balance this issue by highlighting the significant domain and by severely penalizing the pure background. In addition, we introduce a full differentiable hierarchy-normalized concatenation connection to exploit abstractions across multiple convolutional layers. Extensive experiments were conducted on five challenging benchmark-tracking datasets, that is, OTB-13, OTB-15, TC-128, UAV-123, and VOT17. The experimental results are promising and show that the proposed tracker performs much better than nearly all the compared state-of-the-art approaches.

Details

Language :
English
ISSN :
14248220
Volume :
19
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.3d8d58cbb2fb4caba9a489f6cc2114d5
Document Type :
article
Full Text :
https://doi.org/10.3390/s19020387