Back to Search Start Over

Dry deposition of nitrogen compounds (NO2, HNO3, NH3), sulfur dioxide and ozone in west and central African ecosystems using the inferential method

Authors :
M. Adon
C. Galy-Lacaux
C. Delon
V. Yoboue
F. Solmon
A. T. Kaptue Tchuente
Source :
Atmospheric Chemistry and Physics, Vol 13, Iss 22, Pp 11351-11374 (2013)
Publication Year :
2013
Publisher :
Copernicus Publications, 2013.

Abstract

This work is part of the IDAF program (IGAC-DEBITS-AFRICA) and is based on the long-term monitoring of gas concentrations (1998–2007) established at seven remote sites representative of major African ecosystems. Dry deposition fluxes were estimated by the inferential method using on the one hand surface measurements of gas concentrations (NO2, HNO3, NH3, SO2 and O3) and on the other hand modeled exchange rates. Dry deposition velocities (Vd) were calculated using the big-leaf model of Zhang et al. (2003b). The bidirectional approach is used for NH3 surface–atmosphere exchange (Zhang et al., 2010). Surface and meteorological conditions specific to IDAF sites have been used in the models of deposition. The seasonal and annual mean variations of gaseous dry deposition fluxes (NO2, HNO3, NH3, O3 and SO2) are analyzed. Along the latitudinal transect of ecosystems, the annual mean dry deposition fluxes of nitrogen compounds range from −0.4 to −0.8 kg N ha−1 yr−1 for NO2, from −0.7 to −1.0 kg N ha−1 yr−1 for HNO3 and from −0.7 to −8.3 kg N ha−1 yr−1 for NH3 over the study period (1998–2007). The total nitrogen dry deposition flux (NO2+HNO3+NH3) is more important in forests (−10 kg N ha−1 yr−1) than in wet and dry savannas (−1.6 to −3.9 kg N ha−1 yr−1). The annual mean dry deposition fluxes of ozone range between −11 and −19 kg ha−1 yr−1 in dry and wet savannas, and −11 and −13 kg ha−1 yr−1 in forests. Lowest O3 dry deposition fluxes in forests are correlated to low measured O3 concentrations, lower by a factor of 2–3, compared to other ecosystems. Along the ecosystem transect, the annual mean of SO2 dry deposition fluxes presents low values and a small variability (−0.5 to −1 kg S ha−1 yr−1). No specific trend in the interannual variability of these gaseous dry deposition fluxes is observed over the study period.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316, 16807324, and 13512013
Volume :
13
Issue :
22
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.3d8aa0edb57e41bebd6f73d743fccabe
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-13-11351-2013