Back to Search Start Over

Phase separation and enhanced wear resistance of Cu88Fe12 immiscible coating prepared by laser cladding

Authors :
Shuzhen Zhao
Shengfeng Zhou
Min Xie
Xiaoqin Dai
Dongchu Chen
Lai-Chang Zhang
Source :
Journal of Materials Research and Technology, Vol 8, Iss 2, Pp 2001-2010 (2019)
Publication Year :
2019
Publisher :
Elsevier, 2019.

Abstract

In order to eliminate the microstructure segregation of Cu–Fe immiscible alloys which characterized with a liquid miscible gap, the Cu88Fe12 (wt.%) immiscible coating was prepared by laser cladding. The phase separation characteristic and wear resistance of the Cu88Fe12 (wt.%) immiscible coating were also investigated. The results show that the size of the milled Cu88Fe12 composite powder is reduced comparing to that of the un-milled powder due to fracturing during mechanical milling. Moreover, the demixing or delamination disappears in the Cu88Fe12 immiscible coating and a large amount of face-centered-cubic (fcc) γ-Fe and body-centered-cubic (bcc) α-Fe particles are dispersed in the face-centered-cubic (fcc) ɛ-Cu matrix as a result of liquid phase separation. The size of Fe-rich particles presents an increasing tendency from the bottom to the top of the immiscible coating. As a result, the microhardness of the immiscible coating is improved compared with brass (∼138 HV0.2) due to the presence of high-hardness Fe-rich particles (∼191 HV0.2) and the solid solution strengthening effect of Fe in Cu-rich matrix. Furthermore, the width of ploughing, the width and height of wear scar on the surface of the immiscible coating are much less than those on the surface of brass. Therefore, the wear resistance of the immiscible coating is remarkably enhanced compared with brass. Keywords: Immiscible alloy, Cu–Fe, Liquid phase separation, Microstructure, Wear resistance

Details

Language :
English
ISSN :
22387854
Volume :
8
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Journal of Materials Research and Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.3d82696b06e8481e9584537417d941b5
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jmrt.2018.12.018