Back to Search Start Over

Detection of magnetized quark-nuggets, a candidate for dark matter

Authors :
J. Pace VanDevender
Aaron P. VanDevender
T. Sloan
Criss Swaim
Peter Wilson
Robert. G. Schmitt
Rinat Zakirov
Josh Blum
James L. Cross
Niall McGinley
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-14 (2017)
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Abstract Quark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks and are also called strangelets and nuclearites. They have been proposed as a candidate for dark matter, which constitutes ~85% of the universe’s mass and which has been a mystery for decades. Previous efforts to detect quark nuggets assumed that the nuclear-density core interacts directly with the surrounding matter so the stopping power is minimal. Tatsumi found that quark nuggets could well exist as a ferromagnetic liquid with a ~1012-T magnetic field. We find that the magnetic field produces a magnetopause with surrounding plasma, as the earth’s magnetic field produces a magnetopause with the solar wind, and substantially increases their energy deposition rate in matter. We use the magnetopause model to compute the energy deposition as a function of quark-nugget mass and to analyze testing the quark-nugget hypothesis for dark matter by observations in air, water, and land. We conclude the water option is most promising.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.3d6208b2e5e848a8a64b34f0931b4461
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-017-09087-3