Back to Search
Start Over
Correlation-driven topological Kondo superconductors
- Source :
- Communications Physics, Vol 7, Iss 1, Pp 1-11 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Searching for topological superconductors that host topological charge-neutral Majorana zero-modes at edges has become a central problem in condensed matter research due to their potential applications for quantum computations. Meanwhile, electron correlations in solid-state materials enhance quantum fluctuations and give rise to various quantum many-body phases. Whether these electron correlations alone would lead to topological superconductivity is a fundamentally important open problem. Here, we theoretically find the correlation-driven topological superconductivity in a class of Kondo lattice materials. Therein, the odd-parity Kondo hybridization mediates ferromagnetic spin-spin coupling and leads to spin-triplet pairing between local moments. Triplet $$p\pm i{p}^{{\prime} }$$ p ± i p ′ -wave topological superconductivity with Majorana zero modes at edges is reached when Kondo hybridization co-exists with the triplet pairings. Our results offer a detailed understanding of the experimental observations on UTe2, a ferromagnetic heavy-electron triplet superconductor. Our approach to topological superconductivity shows advantages over the heterostructure approach by proximity effect.
- Subjects :
- Astrophysics
QB460-466
Physics
QC1-999
Subjects
Details
- Language :
- English
- ISSN :
- 23993650
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3d352e78b16a4436b58aab506250f1d9
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42005-024-01749-9