Back to Search Start Over

EnsVAE: Ensemble Variational Autoencoders for Recommendations

Authors :
Ahlem Drif
Houssem Eddine Zerrad
Hocine Cherifi
Source :
IEEE Access, Vol 8, Pp 188335-188351 (2020)
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

Recommender systems are information software that retrieves relevant items for users from massive sources of data. The variational autoencoder (VAE) has proven to be a promising approach for recommendation systems, as it can explore high-level user-item relations and extract contingencies from the input effectively. However, the previous variants of VAE have so far seen limited application to domain-specific recommendations that require additional side information. Hence, The Ensemble Variational Autoencoder framework for recommendations (EnsVAE) is proposed. This architecture specifies a procedure to transform sub-recommenders' predicted utility matrix into interest probabilities that allow the VAE to represent the variation in their aggregation. To evaluate the performance of EnsVAE, an instance - called the “Ensemblist GRU/GLOVE model” - is developed. It is based on two innovative recommender systems: 1-) a new “GloVe content-based filtering recommender” (GloVe-CBF) that exploits the strengths of embedding-based representations and stacking ensemble learning techniques to extract features from the item-based side information. 2-) a variant of neural collaborative filtering recommender, named “Gate Recurrent Unit-based Matrix Factorization recommender” (GRU-MF). It models a high level of non-linearities and exhibits interactions between users and items in latent embeddings, reducing user biases towards items that are rated frequently by users. The developed instance speeds up the reconstruction of the utility matrix with increased accuracy. Additionally, it can switch between one of its sub-recommenders according to the context of their use. Our findings reveal that EnsVAE instances retain as much information as possible during the reconstruction of the utility matrix. Furthermore, the trained VAE's generative trait tackles the cold-start problem by accurately estimating the interest probabilities of newly-introduced users and resources. The empirical study on real-world datasets proves that EnsVAE significantly outperforms the state-of-the-art methods in terms of recommendation performances.

Details

Language :
English
ISSN :
21693536
Volume :
8
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.3d33628c958d43a19a7b4995658406ed
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2020.3030693