Back to Search Start Over

A New Deep Learning Network for Automatic Bridge Detection from SAR Images Based on Balanced and Attention Mechanism

Authors :
Lifu Chen
Ting Weng
Jin Xing
Zhouhao Pan
Zhihui Yuan
Xuemin Xing
Peng Zhang
Source :
Remote Sensing, Vol 12, Iss 3, p 441 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Bridge detection from Synthetic Aperture Radar (SAR) images has very important strategic significance and practical value, but there are still many challenges in end-to-end bridge detection. In this paper, a new deep learning-based network is proposed to identify bridges from SAR images, namely, multi-resolution attention and balance network (MABN). It mainly includes three parts, the attention and balanced feature pyramid (ABFP) network, the region proposal network (RPN), and the classification and regression. First, the ABFP network extracts various features from SAR images, which integrates the ResNeXt backbone network, balanced feature pyramid, and the attention mechanism. Second, extracted features are used by RPN to generate candidate boxes of different resolutions and fused. Furthermore, the candidate boxes are combined with the features extracted by the ABFP network through the region of interest (ROI) pooling strategy. Finally, the detection results of the bridges are produced by the classification and regression module. In addition, intersection over union (IOU) balanced sampling and balanced L1 loss functions are introduced for optimal training of the classification and regression network. In the experiment, TerraSAR data with 3-m resolution and Gaofen-3 data with 1-m resolution are used, and the results are compared with faster R-CNN and SSD. The proposed network has achieved the highest detection precision (P) and average precision (AP) among the three networks, as 0.877 and 0.896, respectively, with the recall rate (RR) as 0.917. Compared with the other two networks, the false alarm targets and missed targets of the proposed network in this paper are greatly reduced, so the precision is greatly improved.

Details

Language :
English
ISSN :
20724292
Volume :
12
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.3ce73460bfe0402c8404d604f3d00a21
Document Type :
article
Full Text :
https://doi.org/10.3390/rs12030441