Back to Search Start Over

Activity of volatiles induced by microbes and natural plants stifled the growth of Pythium aphanidermatum - the damping off in Tomato

Authors :
Praveen Thangaraj
Krishnamoorthy Akkanna Subbiah
Nakkeeran Sevugapperumal
Sivakumar Uthandi
Amirtham Damodarasamy
Haripriya Shanmugam
Source :
BMC Plant Biology, Vol 23, Iss 1, Pp 1-14 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background Volatilomes from natural plants and microbes imparts diverse antifungal properties to suppress the growth of plant pathogens and therefore can be a suitable alternative of chemical fungicides. The present experiment was to study effect of volatiles produced by natural plants and microbes on the fungal growth of Pythium aphanidermatum, which is a tomato seedling pathogen. Results Isolate of P. aphanidermatum, causing damping off in tomato were isolated and incubated at 25 ± 2 °C. The isolate was tested for the anti-oomycetes activities of volatiles in vitro. The volatiles produced by the leaves of Mentha spicata and Cymbopogon citratus showed the maximum inhibitory effect of 45.56 and 24.70 percent, respectively on the mycelial growth of P. aphanidermatum, whereas, the pathogen was not inhibited on exposure to the volatiles of macro-basidiomycetes fungi. The volatiles of T. asperellum showed the maximum inhibitory effect of 69.26 percent against P. aphanidermatum. The study also included the identification of Volatile Organic Compounds (VOCs) involved in the suppression of pathogens by Headspace Gas Chromatography Mass Spectrometry (HS GCMS). The results revealed the production of carvone by the leaves of M. spicata; citronellol and geraniol by C. citratus; isopentyl alcohol and limonene by T. asperellum with increased peak area percentage and these compounds possessed antifungal properties. The vaporous action of isopentyl alcohol completely suppressed the mycelial growth of P. aphanidermatum, which is highly correlated to the T. asperellum extract on pathogenic growth. While the compounds, carvone, and citronellol showed the maximum inhibitory effect of 89.02 and 85.49 percent, respectively when used at 500 ppm and also altered the sporulation behavior of P. aphanidermatum. Conclusion Results showed that volatiles of M. spicata and T. asperellum have anti-oomycetes action on pathogenic growth leading to a distortion of sporulation of P. aphanidermatum. High antifungal properties make VOCs suitable for incorporation as a new integrated plant disease management programs.

Details

Language :
English
ISSN :
14712229
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Plant Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.3ccdf3a6cf34ea99b70ddb72d98e426
Document Type :
article
Full Text :
https://doi.org/10.1186/s12870-023-04351-3