Back to Search Start Over

Exogenous application of 5-azacitidin, royal jelly and folic acid regulate plant redox state, expression level of DNA methyltransferases and alleviate adverse effects of salinity stress on Vicia faba L. plants

Authors :
Samar A. Omar
Yingming Feng
Min Yu
Samar A. Gamal. Eldin
Medhat E. Eldenary
Sergey Shabala
Suleyman I. Allakhverdiev
Mohamed H. Abdelfattah
Source :
Heliyon, Vol 10, Iss 10, Pp e30934- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

DNA methylation is one of induced changes under salinity stress causing reduction in the expression of several crucial genes required for normal plant's operation. Potential use of royal jelly (RJ), folic acid (FA) and 5-azacitidine (5-AZA) on two Egyptian faba bean varieties (Sakha-3 and Giza-716) grown under saline conditions was investigated. Salinity stress affects negatively on seeds germination (G %), mitotic index, membrane stability and induced a significant increase in chromosomal abnormalities (CAs). DNA methyltransferases genes (MT1 and MT2) were highly up-regulated (∼23 and 8 folds for MT1 and MT2 in shoots of Giza-716 stressed plants). On the other hand, down regulation of other studied stress related genes: superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), heat shock protein (HSP-17.9) and proline-rich protein (GPRP) were detected in stressed plants of both studied varieties. Treating plants with RJ and FA increase G%, chlorophyll content, improves membrane properties and reduces CAs compared to non-treated stressed plants. Exogenous application of 5-AZA, RJ and FA on salinity stressed plants was associated with a significant reduction in the transcription of MT1 and MT2 which was associated with significant up regulation in the expression of Cu/Zn-SOD, CAT, GR, GPRP and HSP-17.9 encoding genes. The Lowest expression of MT1 and MT2 were induced with 5-AZA treatment in both studied varieties. Exogenous application of the FA, RJ and 5-AZA modified the methylation state of stressed plants by regulation the expression of DNA methyltransferases, subsequently, modulated the expression of studied genes and could be proposed as a promising treatment to ameliorate hazardous effects of salt stress on different plants.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.3cb2824418864da1818e221cf344af36
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e30934