Back to Search Start Over

Blockchain-Based KYC Model for Credit Allocation in Banking

Authors :
Bulut Karadag
A. Halim Zaim
Akhan Akbulut
Source :
IEEE Access, Vol 12, Pp 80176-80182 (2024)
Publication Year :
2024
Publisher :
IEEE, 2024.

Abstract

The implementation of the Know Your Customer (KYC) strategy by banks within the financial sector enhances the operational efficiency of such establishments. The data gathered from the client during the KYC procedure may be applied to deter possible fraudulent activities, money laundering, and other criminal undertakings. The majority of financial institutions implement their own KYC procedures. Furthermore, a centralized system permits collaboration and operation execution by multiple financial institutions. Aside from these two scenarios, KYC processes can also be executed via a blockchain-based system. The blockchain’s decentralized network would be highly transparent, facilitating the validation and verification of customer data in real-time for all relevant stakeholders. In addition, the immutability and cryptography of the blockchain ensure that client information is secure and immutable, thereby eradicating the risk of data breaches. Blockchain-based KYC can further improve the client experience by eliminating the requirement for redundant paperwork and document submissions. After banks grant consumers loans, a blockchain-based KYC system is proposed in this study to collect limit, risk, and collateral information from them. The approach built upon Ethereum grants financial institutions the ability to read and write financial data on the blockchain network. This KYC method establishes a transparent, dynamic, and expeditious framework among financial institutions. In addition, solutions are discussed for the Sybil attack, one of the most severe problems in such networks.

Details

Language :
English
ISSN :
21693536
Volume :
12
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.3be5f32d1eb48cd95073e4b07a3883a
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2024.3410874