Back to Search
Start Over
S100A9 blockade prevents lipopolysaccharide-induced lung injury via suppressing the NLRP3 pathway
- Source :
- Respiratory Research, Vol 22, Iss 1, Pp 1-11 (2021)
- Publication Year :
- 2021
- Publisher :
- BMC, 2021.
-
Abstract
- Abstract Background S100 calcium binding protein A9 (S100A9) is a pro-inflammatory alarmin associated with several inflammation-related diseases. However, the role of S100A9 in lung injury in sepsis has not been fully investigated. Therefore, the present study aimed to determine the role of S100A9 in a lipopolysaccharide (LPS)-induced lung injury murine model and its underlying molecular mechanisms. Methods LPS was utilized to induce sepsis and lung injury in C57BL/6 or NOD-like receptor family pyrin domain containing 3 (NLRP3)−/− mice. To investigate the effects of S100A9 blockade, mice were treated with a specific inhibitor of S100A9. Subsequently, lung injury and inflammation were evaluated by histology and enzyme‑linked immunosorbent assay (ELISA), respectively. Furthermore, western blot analysis and RT-qPCR were carried out to investigate the molecular mechanisms underlying the effects of S100A9. Results S100A9 was upregulated in the lung tissues of LPS-treated mice. However, inhibition of S100A9 alleviated LPS-induced lung injury. Additionally, S100A9 blockade also attenuated the inflammatory responses and apoptosis in the lungs of LPS-challenged mice. Furthermore, the increased expression of NLRP3 was also suppressed by S100A9 blockade, while S100A9 blockade had no effect on NLRP3−/− mice. In vitro, S100A9 downregulation mitigated LPS-induced inflammation. Interestingly, these effects were blunted by NLRP3 overexpression. Conclusion The results of the current study suggested that inhibition of S100A9 could protect against LPS-induced lung injury via inhibiting the NLRP3 pathway. Therefore, S100A9 blockade could be considered as a novel therapeutic strategy for lung injury in sepsis.
Details
- Language :
- English
- ISSN :
- 1465993X
- Volume :
- 22
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Respiratory Research
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3be002a2641458c977dc0efecbefbdf
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12931-021-01641-y