Back to Search
Start Over
CVML-Pose: Convolutional VAE Based Multi-Level Network for Object 3D Pose Estimation
- Source :
- IEEE Access, Vol 11, Pp 13830-13845 (2023)
- Publication Year :
- 2023
- Publisher :
- IEEE, 2023.
-
Abstract
- Most vision-based 3D pose estimation approaches typically rely on knowledge of object’s 3D model, depth measurements, and often require time-consuming iterative refinement to improve accuracy. However, these can be seen as limiting factors for broader real-life applications. The main motivation for this paper is to address these limitations. To solve this, a novel Convolutional Variational Auto-Encoder based Multi-Level Network for object 3D pose estimation (CVML-Pose) method is proposed. Unlike most other methods, the proposed CVML-Pose implicitly learns an object’s 3D pose from only RGB images encoded in its latent space without knowing the object’s 3D model, depth information, or performing a post-refinement. CVML-Pose consists of two main modules: (i) CVML-AE representing convolutional variational autoencoder, whose role is to extract features from RGB images, (ii) Multi-Layer Perceptron and K-Nearest Neighbor regressors mapping the latent variables to object 3D pose including, respectively, rotation and translation. The proposed CVML-Pose has been evaluated on the LineMod and LineMod-Occlusion benchmark datasets. It has been shown to outperform other methods based on latent representations and achieves comparable results to the state-of-the-art, but without use of a 3D model or depth measurements. Utilizing the t-Distributed Stochastic Neighbor Embedding algorithm, the CVML-Pose latent space is shown to successfully represent objects’ category and topology. This opens up a prospect of integrated estimation of pose and other attributes (possibly also including surface finish or shape variations), which, with real-time processing due to the absence of iterative refinement, can facilitate various robotic applications. Code available: https://github.com/JZhao12/CVML-Pose.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3b32d0cb594a5c8bab297f8c5b1965
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2023.3243551