Back to Search Start Over

Assessing abnormal corneal endothelial cells from in vivo confocal microscopy images using a fully automated deep learning system

Authors :
Jinghao Qu
Xiaoran Qin
Rongmei Peng
Gege Xiao
Shaofeng Gu
Haikun Wang
Jing Hong
Source :
Eye and Vision, Vol 10, Iss 1, Pp 1-10 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background The goal of this study is to develop a fully automated segmentation and morphometric parameter estimation system for assessing abnormal corneal endothelial cells (CECs) from LASER in vivo confocal microscopy (IVCM) images. Methods First, we developed a fully automated deep learning system for assessing abnormal CECs using a previous development set composed of normal images and a newly constructed development set composed of abnormal images. Second, two testing sets, one with 169 normal images and the other with 211 abnormal images, were used to evaluate the clinical validity and effectiveness of the proposed system on LASER IVCM images with different corneal endothelial conditions, particularly on abnormal images. Third, the automatically calculated endothelial cell density (ECD) and the manually calculated ECD were compared using both the previous and proposed systems. Results The automated morphometric parameter estimations of the average number of cells, ECD, coefficient of variation in cell area and percentage of hexagonal cells were 257 cells, 2648 ± 511 cells/mm2, 32.18 ± 6.70% and 56.23 ± 8.69% for the normal CEC testing set and 83 cells, 1450 ± 656 cells/mm2, 34.87 ± 10.53% and 42.55 ± 20.64% for the abnormal CEC testing set. Furthermore, for the abnormal CEC testing set, Pearson’s correlation coefficient between the automatically and manually calculated ECDs was 0.9447; the 95% limits of agreement between the manually and automatically calculated ECDs were between 329.0 and − 579.5 (concordance correlation coefficient = 0.93). Conclusions This is the first report to count and analyze the morphology of abnormal CECs in LASER IVCM images using deep learning. Deep learning produces highly objective evaluation indicators for LASER IVCM corneal endothelium images and greatly expands the range of applications for LASER IVCM.

Details

Language :
English
ISSN :
23260254
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Eye and Vision
Publication Type :
Academic Journal
Accession number :
edsdoj.3b24519ed1f640c8af786ecddcdc6c7f
Document Type :
article
Full Text :
https://doi.org/10.1186/s40662-023-00340-7