Back to Search Start Over

Automatic Identification of Bioprostheses on X-ray Angiographic Sequences of Transcatheter Aortic Valve Implantation Procedures Using Deep Learning

Authors :
Laura Busto
César Veiga
José A. González-Nóvoa
Marcos Loureiro-Ga
Víctor Jiménez
José Antonio Baz
Andrés Íñiguez
Source :
Diagnostics, Vol 12, Iss 2, p 334 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Transcatheter aortic valve implantation (TAVI) has become the treatment of choice for patients with severe aortic stenosis and high surgical risk. Angiography has been established as an essential tool in TAVI, as this modality provides real-time images required to support the intervention. The automatic interpretation and parameter extraction on such images can lead to significative improvements and new applications in the procedure that, in most cases, rely on a prior identification of the transcatheter heart valve (THV). In this paper, U-Net architecture is proposed for the automatic segmentation of THV on angiographies, studying the role of its hyperparameters in the quality of the segmentations. Several experiments have been conducted, testing the methodology using multiple configurations and evaluating the results on different types of frames captured during the procedure. The evaluation has been performed in terms of conventional classification metrics, complemented with two new metrics, specifically defined for this problem. Those new metrics provide a more appropriate assessment of the quality of the results, given the class imbalance in the dataset. From an analysis of the evaluation results, it can be concluded that the method provides appropriate segmentation results for this dataset.

Details

Language :
English
ISSN :
20754418
Volume :
12
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Diagnostics
Publication Type :
Academic Journal
Accession number :
edsdoj.3afb91f0a2494daeae231e965fccc8d0
Document Type :
article
Full Text :
https://doi.org/10.3390/diagnostics12020334