Back to Search Start Over

The N-reductive system composed of mitochondrial amidoxime reducing component (mARC), cytochrome b5 (CYB5B) and cytochrome b5 reductase (CYB5R) is regulated by fasting and high fat diet in mice.

Authors :
Heyka H Jakobs
Michal Mikula
Antje Havemeyer
Adriana Strzalkowska
Monika Borowa-Chmielak
Artur Dzwonek
Marta Gajewska
Ewa E Hennig
Jerzy Ostrowski
Bernd Clement
Source :
PLoS ONE, Vol 9, Iss 8, p e105371 (2014)
Publication Year :
2014
Publisher :
Public Library of Science (PLoS), 2014.

Abstract

The mitochondrial amidoxime reducing component mARC is the fourth mammalian molybdenum enzyme. The protein is capable of reducing N-oxygenated structures, but requires cytochrome b5 and cytochrome b5 reductase for electron transfer to catalyze such reactions. It is well accepted that the enzyme is involved in N-reductive drug metabolism such as the activation of amidoxime prodrugs. However, the endogenous function of the protein is not fully understood. Among other functions, an involvement in lipogenesis is discussed. To study the potential involvement of the protein in energy metabolism, we tested whether the mARC protein and its partners are regulated due to fasting and high fat diet in mice. We used qRT-PCR for expression studies, Western Blot analysis to study protein levels and an N-reductive biotransformation assay to gain activity data. Indeed all proteins of the N-reductive system are regulated by fasting and its activity decreases. To study the potential impact of these changes on prodrug activation in vivo, another mice experiment was conducted. Model compound benzamidoxime was injected to mice that underwent fasting and the resulting metabolite of the N-reductive reaction, benzamidine, was determined. Albeit altered in vitro activity, no changes in the metabolite concentration in vivo were detectable and we can dispel concerns that fasting alters prodrug activation in animal models. With respect to high fat diet, changes in the mARC proteins occur that result in increased N-reductive activity. With this study we provide further evidence that the endogenous function of the mARC protein is linked with lipid metabolism.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
8
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.3aef3ed734df1b33adad8e10a98d4
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0105371