Back to Search Start Over

Distribution and Diversity of Comammox Nitrospira in Coastal Wetlands of China

Authors :
Dongyao Sun
Xiufeng Tang
Mengyue Zhao
Zongxiao Zhang
Lijun Hou
Min Liu
Baozhan Wang
Uli Klümper
Ping Han
Source :
Frontiers in Microbiology, Vol 11 (2020)
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

Complete ammonia oxidizers (comammox), able to individually oxidize ammonia to nitrate, are considered to play a significant role in the global nitrogen cycle. However, the distribution of comammox Nitrospira in estuarine tidal flat wetland and the environmental drivers affecting their abundance and diversity remain unknown. Here, we present a large-scale investigation on the geographical distribution of comammox Nitrospira along the estuarine tidal flat wetlands of China, where comammox Nitrospira were successfully detected in 9 of the 16 sampling sites. The abundance of comammox Nitrospira ranged from 5.19 × 103 to 8.33 × 104 copies/g, 2.21 to 5.44-folds lower than canonical ammonia oxidizers: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Phylogenetic analysis based on the alpha subunit of the ammonia monooxygenase encoding gene (amoA) revealed that comammox Nitrospira Clade A, mainly originating from upstream river inputs, accounts for more than 80% of the detected comammox Nitrospira, whereas comammox Nitrospira clade B were rarely detected. Comammox Nitrospira abundance and dominant comammox Nitrospira OTUs varied within the estuarine samples, showing a geographical pattern. Salinity and pH were the most important environmental drivers affecting the distribution of comammox Nitrospira in estuarine tidal flat wetlands. The abundance of comammox Nitrospira was further negatively correlated with high ammonia and nitrite concentrations. Altogether, this study revealed the existence, abundance and distribution of comammox Nitrospira and the driving environmental factors in estuarine ecosystems, thus providing insights into the ecological niches of this recently discovered nitrifying consortium and their contributions to nitrification in global estuarine environments.

Details

Language :
English
ISSN :
1664302X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Microbiology
Publication Type :
Academic Journal
Accession number :
edsdoj.3acfec36f224466891177aaaedb8dc75
Document Type :
article
Full Text :
https://doi.org/10.3389/fmicb.2020.589268