Back to Search Start Over

Synthetic multivalent antifungal peptides effective against fungi.

Authors :
Rajamani Lakshminarayanan
Shouping Liu
Jianguo Li
Muruganantham Nandhakumar
Thet Tun Aung
Eunice Goh
Jamie Ya Ting Chang
Padhmanaban Saraswathi
Charles Tang
Siti Radiah Binte Safie
Lim Yih Lin
Howard Riezman
Zhou Lei
Chandra S Verma
Roger W Beuerman
Source :
PLoS ONE, Vol 9, Iss 2, p e87730 (2014)
Publication Year :
2014
Publisher :
Public Library of Science (PLoS), 2014.

Abstract

Taking advantage of the cluster effect observed in multivalent peptides, this work describes antifungal activity and possible mechanism of action of tetravalent peptide (B4010) which carries 4 copies of the sequence RGRKVVRR through a branched lysine core. B4010 displayed better antifungal properties than natamycin and amphotericin B. The peptide retained significant activity in the presence of monovalent/divalent cations, trypsin and serum and tear fluid. Moreover, B4010 is non-haemolytic and non-toxic to mice by intraperitoneal (200 mg/kg) or intravenous (100 mg/kg) routes. S. cerevisiae mutant strains with altered membrane sterol structures and composition showed hyper senstivity to B4010. The peptide had no affinity for cell wall polysaccharides and caused rapid dissipation of membrane potential and release of vital ions and ATP when treated with C. albicans. We demonstrate that additives which alter the membrane potential or membrane rigidity protect C. albicans from B4010-induced lethality. Calcein release assay and molecular dynamics simulations showed that the peptide preferentially binds to mixed bilayer containing ergosterol over phophotidylcholine-cholesterol bilayers. The studies further suggested that the first arginine is important for mediating peptide-bilayer interactions. Replacing the first arginine led to a 2-4 fold decrease in antifungal activities and reduced membrane disruption properties. The combined in silico and in vitro approach should facilitate rational design of new tetravalent antifungal peptides.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
2
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.3ac6c677bc2d44b58f3161d4fd26c57e
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0087730