Back to Search Start Over

Sugarcane Biomass Prediction with Multi-Mode Remote Sensing Data Using Deep Archetypal Analysis and Integrated Learning

Authors :
Zhuowei Wang
Yusheng Lu
Genping Zhao
Chuanliang Sun
Fuhua Zhang
Su He
Source :
Remote Sensing, Vol 14, Iss 19, p 4944 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The use of multi-mode remote sensing data for biomass prediction is of potential value to aid planting management and yield maximization. In this study, an advanced biomass estimation approach for sugarcane fields is proposed based on multi-source remote sensing data. Since feature interpretability in agricultural data mining is significant, a feature extraction method of deep archetypal analysis (DAA) that has good model interpretability is introduced and aided by principal component analysis (PCA) for feature mining from the multi-mode multispectral and light detection and ranging (LiDAR) remote sensing data pertaining to sugarcane. In addition, an integrated regression model integrating random forest regression, support vector regression, K-nearest neighbor regression and deep network regression is developed after feature extraction by DAA to precisely predict biomass of sugarcane. In this study, the biomass prediction performance achieved using the proposed integrated learning approach is found to be predominantly better than that achieved by using conventional linear methods in all the time periods of plant growth. Of more significance, according to model interpretability of DAA, only a small set of informative features maintaining their physical meanings (four informative spectral indices and four key LiDAR metrics) can be extracted which eliminates the redundancy of multi-mode data and plays a vital role in accurate biomass prediction. Therefore, the findings in this study provide hands-on experience to planters with indications of the key or informative spectral or LiDAR metrics relevant to the biomass to adjust the corresponding planting management design.

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.3abd3a4e1d0349f9b1e82c2d207b0c2f
Document Type :
article
Full Text :
https://doi.org/10.3390/rs14194944