Back to Search Start Over

Temperature induces brain-intake shift of recombinant high-density lipoprotein after traumatic brain injury

Authors :
Jialin Huang
Yidong Peng
Xin Wang
Xiaokun Gu
Yao Yi
Wenye Wang
Zhenghui He
Zixuan Ma
Qiyuan Feng
Wenlan Qi
Jiyuan Hui
Ru Gong
Weiji Weng
Gan Jiang
Yingwei Gao
Yong Lin
Jin Li
Jiyao Jiang
Junfeng Feng
Source :
Journal of Nanobiotechnology, Vol 22, Iss 1, Pp 1-24 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Traumatic brain injury (TBI) is one of the leading public health concerns in the world. Therapeutic hypothermia is routinely used in severe TBI, and pathophysiological hyperthermia, frequently observed in TBI patients, has an unclear impact on drug transport in the injured brain due to a lack of study on its effects. We investigated the effect of post-traumatic therapeutic hypothermia at 33°C and pathophysiological hyperthermia at 39°C on brain transport and cell uptake of neuroprotectants after TBI. Recombinant high-density lipoprotein (rHDL), which possesses anti-inflammatory, antioxidant activity, and blood–brain barrier (BBB) permeability, was chosen as the model drug. First, we found that mild hypothermia and hyperthermia impaired rHDL transport to the brain and lesion targeting in controlled cortical impact mice. Second, we investigated the temperature-induced rHDL uptake shift by various brain cell types. Mild hypothermia impeded the uptake of rHDL by endothelial cells, neurons, microglia, and astrocytes. Hyperthermia impeded the uptake of rHDL by endothelial cells and neurons while promoting its uptake by microglia and astrocytes. In an attempt to understand the mechanisms behind the above phenomena, it was found that temperature induced brain-intake shift of rHDL through the regulation of low-density lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1) stability in brain cells. We therefore reported the full view of the temperature-induced brain-intake shift of rHDL after TBI for the first time. It would be of help in coordinating pharmacotherapy with temperature management in individualization and precision medicine. Graphical Abstract

Details

Language :
English
ISSN :
14773155
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.3abb1d160eec4d9080771c6c7e725f70
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-024-03016-z