Back to Search Start Over

Model-driven engineering for digital twins: a graph model-based patient simulation application

Authors :
William Trevena
Xiang Zhong
Amos Lal
Lucrezia Rovati
Edin Cubro
Yue Dong
Phillip Schulte
Ognjen Gajic
Source :
Frontiers in Physiology, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

IntroductionDigital twins of patients are virtual models that can create a digital patient replica to test clinical interventions in silico without exposing real patients to risk. With the increasing availability of electronic health records and sensor-derived patient data, digital twins offer significant potential for applications in the healthcare sector.MethodsThis article presents a scalable full-stack architecture for a patient simulation application driven by graph-based models. This patient simulation application enables medical practitioners and trainees to simulate the trajectory of critically ill patients with sepsis. Directed acyclic graphs are utilized to model the complex underlying causal pathways that focus on the physiological interactions and medication effects relevant to the first 6 h of critical illness. To realize the sepsis patient simulation at scale, we propose an application architecture with three core components, a cross-platform frontend application that clinicians and trainees use to run the simulation, a simulation engine hosted in the cloud on a serverless function that performs all of the computations, and a graph database that hosts the graph model utilized by the simulation engine to determine the progression of each simulation.ResultsA short case study is presented to demonstrate the viability of the proposed simulation architecture.DiscussionThe proposed patient simulation application could help train future generations of healthcare professionals and could be used to facilitate clinicians’ bedside decision-making.

Details

Language :
English
ISSN :
1664042X
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
edsdoj.3aa2820a214472c8608ee28b4da56b2
Document Type :
article
Full Text :
https://doi.org/10.3389/fphys.2024.1424931