Back to Search Start Over

Research on Detection and Restoration Methods of Basic Operation Data for Inter-Basin Water Diversion Projects

Authors :
Mengyao Lu
Guitao Xu
Xiaolian Liu
Source :
Applied Sciences, Vol 13, Iss 21, p 11726 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Inter-basin water diversion is an essential means to alleviate the contradiction between the supply and demand of water resources, and accurate hydraulic modelling guarantees smooth operation. However, due to the increasing complexity of water diversion methods, structures, water conservancy facilities and equipment, it is difficult to obtain accurate and effective measured data to establish a model. Therefore, based on a data-driven method, this paper diagnoses and restores the important parameters of the water diversion projects, including the elevation of pipeline and water level data, which can be used to establish the adaptive hydraulic transition model of the water diversion projects. Firstly, the abnormal data of the elevation of pipeline were identified using expert data annotation and support vector classification (SVC), with the identification accuracy of abnormal data being as high as 91%. Then, the single and continuous abnormal data were restored using an interpolation method and multiple linear regression algorithm (MLR), and the restored data were found to be consistent with the judgment of expert knowledge. Secondly, K-medoids was used to classify the complex multi-dimensional water level data, combined with the 3-sigma method to identify the outliers in each class. The gradient boosting decision tree algorithm (GBDT) trained on normal data restored outliers in a predictive manner, and the mean absolute percentage error (MAPE) was 0.003%, 0.025% and 0.091% in each class, respectively, showing the best accuracy compared with other models.

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.39e8a507c3aa41f19b5c992ca4bbf50d
Document Type :
article
Full Text :
https://doi.org/10.3390/app132111726