Back to Search
Start Over
Targeted neutrophil-mimetic liposomes promote cardiac repair by adsorbing proinflammatory cytokines and regulating the immune microenvironment
- Source :
- Journal of Nanobiotechnology, Vol 20, Iss 1, Pp 1-17 (2022)
- Publication Year :
- 2022
- Publisher :
- BMC, 2022.
-
Abstract
- Abstract Acute myocardial infarction (MI) induces a sterile inflammatory response that may result in poor cardiac remodeling and dysfunction. Despite the progress in anti-cytokine biologics, anti-inflammation therapy of MI remains unsatisfactory, due largely to the lack of targeting and the complexity of cytokine interactions. Based on the nature of inflammatory chemotaxis and the cytokine-binding properties of neutrophils, we fabricated biomimetic nanoparticles for targeted and broad-spectrum anti-inflammation therapy of MI. By fusing neutrophil membranes with conventional liposomes, we fabricated biomimetic liposomes (Neu-LPs) that inherited the surface antigens of the source cells, making them ideal decoys of neutrophil-targeted biological molecules. Based on their abundant chemokine and cytokine membrane receptors, Neu-LPs targeted infarcted hearts, neutralized proinflammatory cytokines, and thus suppressed intense inflammation and regulated the immune microenvironment. Consequently, Neu-LPs showed significant therapeutic efficacy by providing cardiac protection and promoting angiogenesis in a mouse model of myocardial ischemia–reperfusion. Therefore, Neu-LPs have high clinical translation potential and could be developed as an anti-inflammatory agent to remove broad-spectrum inflammatory cytokines during MI and other neutrophil-involved diseases. Graphical Abstract
Details
- Language :
- English
- ISSN :
- 14773155
- Volume :
- 20
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Nanobiotechnology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.39cbdf6740ca4cd7b22b842c877b7c85
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12951-022-01433-6