Back to Search Start Over

Natural hydrogen gas and engineered microalgae prevent acute lung injury in sepsis

Authors :
Yuanlin Wang
Qingqing Han
Lingling Liu
Shuai Wang
Yongfa Li
Zhanying Qian
Yi Jiang
Yonghao Yu
Source :
Materials Today Bio, Vol 28, Iss , Pp 101247- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Background: Hydrogen gas and microalgae both exist in the natural environment. We aimed to integrate hydrogen gas and biology nano microalgae together to expand the treatment options in sepsis. Methods: Phosphoproteomics, metabolomics and proteomics data were obtained from mice undergoing cecum ligation and puncture (CLP) and inhalation of hydrogen gas. All omics analysis procedure were accordance with standards. Multi R packages were used in single cell and spatial transcriptomics analysis to identify primary cells expressing targeted genes, and the genes’ co-expression relationships in sepsis related lung landscape. Then, network pharmacology method was used to identify candidate drugs. We used hydrophobic-force-driving self-assembly method to construct dihydroquercetin (DQ) nanoparticle. To cooperate with molecular hydrogen, ammonia borane (B) was added to DQ surface. Then, Chlorella vulgaris (C) was used as biological carrier to improve self-assembly nanoparticle. Vivo and vitro experiments were both conducted to evaluate anti-inflammation, anti-ferroptosis, anti-infection and organ protection capability. Results: As a result, we identified Esam and Zo-1 were target phosphorylation proteins for molecular hydrogen treatment in lung. Ferroptosis and glutathione metabolism were two target pathways. Chlorella vulgaris improved the dispersion of DQB and reconstructed morphological features of DQB, formed DQB@C nano-system (size = 307.3 nm, zeta potential = −22mv), with well infection-responsive hydrogen release capability and biosafety. In addition, DQB@C was able to decrease oxidative stress and inflammation factors accumulation in lung cells. Through increasing expression level of Slc7a11/xCT and decreasing Cox2 level to participate with the regulation of ferroptosis. Also, DQB@C played lung and multi organ protection and anti-inflammation roles on CLP mice. Conclusion: Our research proposed DQB@C as a novel biology nano-system with enormous potential on treatment for sepsis related acute lung injury to solve the limitation of hydrogen gas utilization in clinics.

Details

Language :
English
ISSN :
25900064
Volume :
28
Issue :
101247-
Database :
Directory of Open Access Journals
Journal :
Materials Today Bio
Publication Type :
Academic Journal
Accession number :
edsdoj.39bf05976e6e49ca8514ceb15b67f3d3
Document Type :
article
Full Text :
https://doi.org/10.1016/j.mtbio.2024.101247