Back to Search Start Over

Random walks on Cayley graphs of complex reflection groups

Authors :
Maksim M. Vaskouski
Source :
Журнал Белорусского государственного университета: Математика, информатика, Iss 3, Pp 51-56 (2021)
Publication Year :
2021
Publisher :
Belarusian State University, 2021.

Abstract

Asymptotic properties of random walks on minimal Cayley graphs of complex reflection groups are investigated. The main result of the paper is theorem on fast mixing for random walks on Cayley graphs of complex reflection groups. Particularly, bounds of diameters and isoperimetric constants, a known result on fast fixing property for expander graphs play a crucial role to obtain the main result. A constructive way to prove a special case of Babai’s conjecture on logarithmic order of diameters for complex reflection groups is proposed. Basing on estimates of diameters and Cheeger inequality, there is obtained a non-trivial lower bound for spectral gaps of minimal Cayley graphs on complex reflection groups.

Details

Language :
Belarusian, English, Russian
ISSN :
25206508 and 26173956
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Журнал Белорусского государственного университета: Математика, информатика
Publication Type :
Academic Journal
Accession number :
edsdoj.39be8ad7ecbf44e1b8fd52fc7320ee80
Document Type :
article
Full Text :
https://doi.org/10.33581/2520-6508-2021-3-51-56