Back to Search
Start Over
Random walks on Cayley graphs of complex reflection groups
- Source :
- Журнал Белорусского государственного университета: Математика, информатика, Iss 3, Pp 51-56 (2021)
- Publication Year :
- 2021
- Publisher :
- Belarusian State University, 2021.
-
Abstract
- Asymptotic properties of random walks on minimal Cayley graphs of complex reflection groups are investigated. The main result of the paper is theorem on fast mixing for random walks on Cayley graphs of complex reflection groups. Particularly, bounds of diameters and isoperimetric constants, a known result on fast fixing property for expander graphs play a crucial role to obtain the main result. A constructive way to prove a special case of Babai’s conjecture on logarithmic order of diameters for complex reflection groups is proposed. Basing on estimates of diameters and Cheeger inequality, there is obtained a non-trivial lower bound for spectral gaps of minimal Cayley graphs on complex reflection groups.
Details
- Language :
- Belarusian, English, Russian
- ISSN :
- 25206508 and 26173956
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- Журнал Белорусского государственного университета: Математика, информатика
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.39be8ad7ecbf44e1b8fd52fc7320ee80
- Document Type :
- article
- Full Text :
- https://doi.org/10.33581/2520-6508-2021-3-51-56