Back to Search Start Over

Deep Learning Assisted Optimization of Metasurface for Multi-Band Compatible Infrared Stealth and Radiative Thermal Management

Authors :
Lei Wang
Jian Dong
Wenjie Zhang
Chong Zheng
Linhua Liu
Source :
Nanomaterials, Vol 13, Iss 6, p 1030 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Infrared (IR) stealth plays a vital role in the modern military field. With the continuous development of detection technology, multi-band (such as near-IR laser and middle-IR) compatible IR stealth is required. Combining rigorous coupled wave analysis (RCWA) with Deep Learning (DL), we design a Ge/Ag/Ge multilayer circular-hole metasurface capable of multi-band IR stealth. It achieves low average emissivity of 0.12 and 0.17 in the two atmospheric windows (3~5 μm and 8~14 μm), while it achieves a relatively high average emissivity of 0.61 between the two atmospheric windows (5~8 μm) for the purpose of radiative thermal management. Additionally, the metasurface has a narrow-band high absorptivity of 0.88 at the near-infrared wavelength (1.54 μm) for laser guidance. For the optimized structure, we also analyze the potential physical mechanisms. The structure we optimized is geometrically simple, which may find practical applications aided with advanced nano-fabrication techniques. Also, our work is instructive for the implementation of DL in the design and optimization of multifunctional IR stealth materials.

Details

Language :
English
ISSN :
20794991
Volume :
13
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.394606f34bd541908e8362733f05a1df
Document Type :
article
Full Text :
https://doi.org/10.3390/nano13061030