Back to Search Start Over

A Hybrid Group-Based Food Recommender Framework for Handling Overlapping Memberships

Authors :
Rao Naveed Bin Rais
Muhammad Noman
Osman Khalid
Imran A. Khan
Source :
Applied Sciences, Vol 14, Iss 13, p 5843 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Recommender systems (RSs) play a pivotal role in mitigating information overload by aiding individuals or groups in discovering relevant and personalized information. An individual’s food preferences may vary when dining with friends compared to dining with family. Most of the existing group RSs generally assume users to be associated with a single group. However, in real-world scenarios, a user can be part of multiple groups due to overlapping/diverse preferences. This raises several challenges for traditional RSs due to the inherent complexity of group memberships, degrading the effectiveness and accuracy of the recommendations. Computing user to group membership degrees is a complex task, and conventional methods often fall short in accurately capturing the varied preferences of individuals. To address these challenges, we propose an integrated two-stage group recommendation (ITGR) framework that considers users’ simultaneous memberships in multiple groups with conflicting preferences. We employ fuzzy C-means clustering along with collaborative filtering to provide a more flexible and precise approach to membership assignment. Group formation is carried out using similarity thresholds followed by deep neural collaborative filtering (DNCF) to generate the top-k items for each group. Experiments are conducted using a large-scale recipes’ dataset, and the results demonstrate that the proposed model outperforms traditional approaches in terms of group satisfaction, normalized discounted cumulative gain (NDCG), precision, recall, and F1-measure.

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
13
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.3939eb4bc75741319d35071fc7797657
Document Type :
article
Full Text :
https://doi.org/10.3390/app14135843