Back to Search
Start Over
IVIM Parameters on MRI Could Predict ISUP Risk Groups of Prostate Cancers on Radical Prostatectomy
- Source :
- Frontiers in Oncology, Vol 11 (2021)
- Publication Year :
- 2021
- Publisher :
- Frontiers Media S.A., 2021.
-
Abstract
- PurposeTo elucidate the usefulness of intravoxel incoherent motion (IVIM)/apparent diffusion coefficient (ADC) parameters in preoperative risk stratification using International Society of Urological Pathology (ISUP) grades.Materials and MethodsForty-five prostate cancer (PCa) patients undergoing radical prostatectomy (RP) after prostate multiparametric magnetic resonance imaging (mpMRI) were included. The ISUP grades were categorized into low-risk (I-II) and high-risk (III-V) groups, and the concordance between the preoperative and postoperative grades was analyzed. The largest region of interest (ROI) of the dominant tumor on each IVIM/ADC image was delineated to obtain its histogram values (i.e., minimum, mean, and kurtosis) of diffusivity (D), pseudodiffusivity (D*), perfusion fraction (PF), and ADC. Multivariable logistic regression analysis of the IVIM/ADC parameters without and with preoperative ISUP grades were performed to identify predictors for the postoperative high-risk group.ResultsThirty-two (71.1%) of 45 patients had concordant preoperative and postoperative ISUP grades. Dmean, D*kurtosis, PFkurtosis, ADCmin, and ADCmean were significantly associated with the postoperative ISUP risk group (all p < 0.05). Dmean and D*kurtosis (model I, both p < 0.05) could predict the postoperative ISUP high-risk group with an area under the curve (AUC) of 0.842 and a 95% confidence interval (CI) of 0.726–0.958. The addition of D*kurtosis to the preoperative ISUP grade (model II) may enhance prediction performance, with an AUC of 0.907 (95% CI 0.822–0.992).ConclusionsThe postoperative ISUP risk group could be predicted by Dmean and D*kurtosis from mpMRI, especially D*kurtosis. Obtaining the biexponential IVIM parameters is important for better risk stratification for PCa.
Details
- Language :
- English
- ISSN :
- 2234943X
- Volume :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Oncology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3881ebd9b204cb39d677612a01b6939
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fonc.2021.659014