Back to Search Start Over

Few-Shot Building Footprint Shape Classification with Relation Network

Authors :
Yaohui Hu
Chun Liu
Zheng Li
Junkui Xu
Zhigang Han
Jianzhong Guo
Source :
ISPRS International Journal of Geo-Information, Vol 11, Iss 5, p 311 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Buildings are important entity objects of cities, and the classification of building shapes plays an indispensable role in the cognition and planning of the urban structure. In recent years, some deep learning methods have been proposed for recognizing the shapes of building footprints in modern electronic maps. Furthermore, their performance depends on enough labeled samples for each class of building footprints. However, it is impractical to label enough samples for each type of building footprint shapes. Therefore, the deep learning methods using few labeled samples are more preferable to recognize and classify the building footprint shapes. In this paper, we propose a relation network based method for the recognization of building footprint shapes with few labeled samples. Relation network, composed of embedding module and relation module, is a metric based few-shot method which aims to learn a generalized metric function and predict the types of the new samples according to their relation with the prototypes of these few labeled samples. To better extract the shape features of the building footprints in the form of vector polygons, we have taken the TriangleConv embedding module to act as the embedding module of the relation network. We validate the effectiveness of our method based on a building footprint dataset with 10 typical shapes and compare it with three classical few-shot learning methods in accuracy. The results show that our method performs better for the classification of building footprint shapes with few labeled samples. For example, the accuracy reached 89.40% for the 2-way 5-shot classification task where there are only two classes of samples in the task and five labeled samples for each class.

Details

Language :
English
ISSN :
22209964 and 38687984
Volume :
11
Issue :
5
Database :
Directory of Open Access Journals
Journal :
ISPRS International Journal of Geo-Information
Publication Type :
Academic Journal
Accession number :
edsdoj.386879842f1b4e5baa2b731eb3b956b9
Document Type :
article
Full Text :
https://doi.org/10.3390/ijgi11050311