Back to Search Start Over

PROPUESTA DE UN SISTEMA NEURO-DBR Y SU APLICACIÓN EN LA PREDICCIÓN DE LA SERIE DE TIEMPO DE LORENZ

Authors :
Lina Morales Laguado
Helbert Espitia Cuchango
José Soriano Méndez
Source :
Ciencia e Ingeniería Neogranadina, Vol 20, Iss 2, Pp 31-51 (2010)
Publication Year :
2010
Publisher :
Editorial Neogranadina, 2010.

Abstract

Este artículo propone la predicción de la serie de tiempo Lorenz usando un nuevo método conocido como sistema Neuro-DBR y su comparación, con un diseño Neurodifuso convencional. La técnica Neuro-DBR es el resultado de la unión de las redes neuronales y la metodología de Defuzificación basada en relaciones booleanas (DBR). La teoría DBR pretende facilitar la implementación de una inferencia difusa y mejorar el tiempo de procesamiento de los sistemas difusos, para obtener a su vez, un buen desempeño. Los sistemas Neuro-DBR tratan de explotar la complementariedad que existe entre ambas técnicas, aprovechando las ventajas y eludiendo las desventajas de cada una de ellas. En una primera parte, se presenta el algoritmo de entrenamiento Neuro-DBR propuesto para identificar sistemas no lineales. Después, se presenta el diseño del identificador para las Ecuaciones de Lorenz, usando un sistema Neuro-DBR y comparándolo con un diseño Neurodifuso convencional mediante la raíz del error cuadrático medio (RMSE), y el coeficiente de correlación (IC), como índices de desempeño. Los resultados obtenidos con el sistema propuesto, muestran la reducción del tiempo de entrenamiento y cálculo computacional. La teoría relacionada con lógica y conjuntos booleanos es una buena herramienta para diseñar de automatismos y sistemas digitales; una variación con la cual se busca mejorar los sistemas basados en automatismos consiste en emplear conjuntos difusos en lugar de booleanos. Lo anterior se realiza con el objetivo de tener una acción continua en el actuador del automatismo. Al realizar esta variación y aplicar la metodología de diseño de los sistemas de automatismos, aparecen los sistemas de inferencia difusa basados en relaciones booleanas.

Details

Language :
English, Spanish; Castilian
ISSN :
01248170 and 19097735
Volume :
20
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Ciencia e Ingeniería Neogranadina
Publication Type :
Academic Journal
Accession number :
edsdoj.384418654a8a4faa8929f43ade3dd902
Document Type :
article