Back to Search Start Over

On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers

Authors :
S. Subburam
Lewis Nkenyereye
N. Anbazhagan
S. Amutha
M. Kameswari
Woong Cho
Gyanendra Prasad Joshi
Source :
Mathematics, Vol 9, Iss 15, p 1813 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.

Details

Language :
English
ISSN :
22277390
Volume :
9
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.3837529f4e40421ba23fb04cf6278067
Document Type :
article
Full Text :
https://doi.org/10.3390/math9151813