Back to Search Start Over

Supplementary data for the biological age linked to oxidative stress modifies breast cancer aggressiveness

Authors :
María del Mar Sáez-Freire
Adrián Blanco-Gómez
Sonia Castillo-Lluva
Aurora Gómez-Vecino
Julie Milena Galvis-Jiménez
Carmen Martín-Seisdedos
María Isidoro-García
Lourdes Hontecillas-Prieto
María Begoña García-Cenador
Francisco Javier García-Criado
María Carmen Patino-Alonso
Purificación Galindo-Villardón
Jian-Hua Mao
Carlos Prieto
Andrés Castellanos-Martín
Lars Kaderali
Jesús Pérez-Losada
Source :
Data in Brief, Vol 18, Iss , Pp 1172-1184 (2018)
Publication Year :
2018
Publisher :
Elsevier, 2018.

Abstract

The data presented in this article are related to the research paper entitled “The biological age linked to oxidative stress modifies breast cancer aggressiveness” (M.M. Sáez-Freire, A. Blanco-Gómez, S. Castillo-Lluva, A. Gómez-Vecino, J.M. Galvis-Jiménez, C. Martín-Seisdedos, M. Isidoro-García, L. Hontecillas-Prieto, M.B. García-Cenador, F.J. García-Criado, M.C. Patino-Alonso, P. Galindo-Villardón, J.H. Mao, C. Prieto, A. Castellanos-Martín, L. Kaderali, J. Pérez-Losada). The data shown were obtained from a population of transgenic mice, MMTV-Erbb2/Neu, with different susceptibility to breast cancer and a mixed genetic background generated by backcrossing. It was observed that the aggressiveness of breast cancer negatively correlates with age, being lower in chronologically old mice, similar to what occurs in humans. Given that oxidative stress is associated with tumour susceptibility and the degree of aging, the association between the aggressiveness of breast cancer and multiple intermediate phenotypes directly or indirectly related to oxidative stress was studied. Using a mathematical model, we defined biological age and the degree of aging as the difference between biological and chronological ages. As a result, we observed that biologically old mice predominated among those that developed the disease early on, that is, those that were chronologically young. We then identified the specific and common genetic components of Quantitative Trait loci or QTL associated with different evolution of breast cancer, the intermediate phenotypes related to oxidative stress studied, the biological age and the degree of aging. Lastly, we showed that the expression pattern in the livers of biologically old mice were enriched in signalling pathways related to inflammation and response to infections; whereas the biologically young mice exhibited enriched pathways related to mitochondrial activity. For the explanation and discussion of these data refer to the research article cited above.

Details

Language :
English
ISSN :
23523409
Volume :
18
Issue :
1172-1184
Database :
Directory of Open Access Journals
Journal :
Data in Brief
Publication Type :
Academic Journal
Accession number :
edsdoj.37f9352c566a4cb992c302a7b5aff2ca
Document Type :
article
Full Text :
https://doi.org/10.1016/j.dib.2018.03.132