Back to Search Start Over

Tubule-specific protein nanocages potentiate targeted renal fibrosis therapy

Authors :
Xuan Zhang
Qian Chen
Liyuan Zhang
Haiping Zheng
Chunjie Lin
Qunfang Yang
Tao Liu
Haigang Zhang
Xiaohong Chen
Lei Ren
Wenjun Shan
Source :
Journal of Nanobiotechnology, Vol 19, Iss 1, Pp 1-17 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Despite the dramatic advances in modern medicine, efficient therapeutic measures for renal fibrosis remain limited. Celastrol (CLT) is effective in treating renal fibrosis in rat models, while causing severe systemic toxicity. Thus, we designed a tubule-specific nanocage (K3-HBc NCs) that effectively deliver CLT to tubular epithelial cell in a virus-like manner. The targeting ligand (K3) to tubular epithelial cells was displayed on the surface of Hepatitis B core protein (HBc) NCs by genetic fusion to the major immunodominant loop region. Ultra-small CLT nanodots were subtly encapsulated into the cavity through electrostatic interaction with the disassembly and reassembly of K3-HBc NCs, to yield K3-HBc/CLT complex. The efficacy of K3-HBc/CLT NCs were demonstrated in Unilateral ureteral obstruction (UUO)-induced renal fibrosis. Results The self-assembled K3-HBc/CLT could specifically target tubular epithelial cells via affinity with K3 ligand binding to the megalin receptor, significantly attenuating renal fibrosis. Remarkably, K3-HBc/CLT NCs significantly increased therapeutic efficacy and reduced the systemic toxicity in comparison with free CLT in UUO-induced mouse renal fibrosis model. Importantly, analysis of RNA sequencing data suggested that the anti-fibrotic effect of K3-HBc/CLT could be attributed to suppression of premature senescence in tubular epithelial cells via p21Cip1 and p16Ink4a pathway. Conclusion The tubule-specific K3-HBc/CLT represented a promising option to realize precise treatment for renal fibrosis.

Details

Language :
English
ISSN :
14773155
Volume :
19
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.37ca2fda35d1400f9131aa951dfa6ad2
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-021-00900-w