Back to Search Start Over

Application of hybridized ensemble learning and equilibrium optimization in estimating damping ratios of municipal solid waste

Authors :
Hossein Moradi Moghaddam
Mohsen Keramati
Alireza Bahrami
Ali Reza Ghanizadeh
Amir Tavana Amlashi
Haytham F. Isleem
Mohsen Navazani
Samer Dessouky
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-25 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The dynamic analysis of municipal solid waste (MSW) is essential for optimizing landfills and advancing sustainable development goals. Assessing damping ratio (D), a critical dynamic parameter, under laboratory conditions is costly and time-consuming, requiring specialized equipment and expertise. To streamline this process, this research leveraged several novel ensemble machine learning models integrated with the equilibrium optimizer algorithm (EOA) for the predictive analysis of damping characteristics. Data were gathered from 153 cyclic triaxial experiments on MSW, which examined the age, shear strain, weight, frequency, and percentage of plastic content. Analysis of a correlation heatmap indicated a significant dependence of D on shear strain within the collected MSW data. Subsequently, five advanced machine learning methods—adaptive boosting (AdaBoost), gradient boosting regression tree (GBRT), extreme gradient boosting (XGBoost), random forest (RF), and cubist regression—were employed to model D in landfill structures. Among these, the GBRT-EOA model demonstrated superior performance, with a coefficient of determination (R2) of 0.898, root mean square error of 1.659, mean absolute error of 1.194, mean absolute percentage error of 0.095, and an a20-index of 0.891 for the test data. A Shapley additive explanation analysis was conducted to validate these models further, revealing the relative contributions of each studied variable to the predicted D-MSW. This holistic approach not only enhances the understanding of MSW dynamics but also aids in the efficient design and management of landfill systems.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.37b047ed93c6421eb0ec30679bdd45e8
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-67381-3