Back to Search Start Over

Three-dimensional ultrashort echo time magnetic resonance imaging in pediatric patients with pneumonia: a comparative study

Authors :
Yan Sun
Yujie Chen
Xuesheng Li
Yi Liao
Xijian Chen
Yu Song
Xinyue Liang
Yongming Dai
Dapeng Chen
Gang Ning
Source :
BMC Medical Imaging, Vol 23, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background UTE has been used to depict lung parenchyma. However, the insufficient discussion of its performance in pediatric pneumonia compared with conventional sequences is a gap in the existing literature. The objective of this study was to compare the diagnostic value of 3D-UTE with that of 3D T1-GRE and T2-FSE sequences in young children diagnosed with pneumonia. Methods Seventy-seven eligible pediatric patients diagnosed with pneumonia at our hospital, ranging in age from one day to thirty-five months, were enrolled in this study from March 2021 to August 2021. All patients underwent imaging using a 3 T pediatric MR scanner, which included three sequences: 3D-UTE, 3D-T1 GRE, and T2-FSE. Subjective analyses were performed by two experienced pediatric radiologists based on a 5-point scale according to six pathological findings (patchy shadows/ground-glass opacity (GGO), consolidation, nodule, bulla/cyst, linear opacity, and pleural effusion/thickening). Additionally, they assessed image quality, including the presence of artifacts, and evaluated the lung parenchyma. Interrater agreement was assessed using intraclass correlation coefficients (ICCs). Differences among the three sequences were evaluated using the Wilcoxon signed-rank test. Results The visualization of pathologies in most parameters (patchy shadows/GGO, consolidation, nodule, and bulla/cyst) was superior with UTE compared to T2-FSE and T1 GRE. The visualization scores for linear opacity were similar between UTE and T2-FSE, and both were better than T1-GRE. In the case of pleural effusion/thickening, T2-FSE outperformed the other sequences. However, statistically significant differences between UTE and other sequences were only observed for patchy shadows/GGO and consolidation. The overall image quality was superior or at least comparable with UTE compared to T2-FSE and T1-GRE. Interobserver agreements for all visual assessments were significant and rated “substantial” or “excellent.” Conclusions In conclusion, UTE MRI is a useful and promising method for evaluating pediatric pneumonia, as it provided better or similar visualization of most imaging findings compared with T2-FSE and T1-GRE. We suggest that the UTE MRI is well-suited for pediatric population, especially in younger children with pneumonia who require longitudinal and repeated imaging for clinical care or research and are susceptible to ionizing radiation.

Details

Language :
English
ISSN :
14712342
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Medical Imaging
Publication Type :
Academic Journal
Accession number :
edsdoj.374e4d4733fd4f739c79722d1cf33235
Document Type :
article
Full Text :
https://doi.org/10.1186/s12880-023-01130-2