Back to Search
Start Over
Artificial Reef Design and Flow Field Analysis for Enhancing Stichopus japonicus Cultivation in Haizhou Bay
- Source :
- Journal of Marine Science and Engineering, Vol 12, Iss 7, p 1130 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- In recent years, with the scale and standardization of Stichopus japonicus mariculture, artificial reefs are increasingly used in S. japonicus farming to promote the development of the S. japonicus aquaculture industry. To provide shelter and improve the habitat environment for S. japonicus, three types of artificial reefs (box-shaped reef, triangular-shaped reef, and trapezoidal-shaped reef) were designed according to the ecological habitats of S. japonicus and the marine environment of Haizhou Bay (China) in the present study. After comprehensively comparing the three reef structures, we found that the trapezoidal-shaped reef has good permeability, a larger attachment area, and excellent anti-slip and anti-overturning properties. Further, the flow field characteristics surrounding a trapezoidal-shaped reef at different angles and flow velocities are investigated by three-dimensional numerical simulations. Then, the impact of the placement distance on the flow field surrounding the artificial reef combination was investigated. At the head-on angle θ = 0°, the upwelling volume increases as the flow velocity increases and then decreases, and the back eddy volume remains relatively constant. At the longitudinal spacing D = 4 L, the large slow-flow area surrounding the reef under this condition is more suitable for the S. japonicus habitat. In this study, the trapezoidal-shaped reef design is suitable and beneficial for S. japonicus aquaculture. Moreover, this study will contribute theoretical references to the design and arrangement of artificial reefs in coastal areas.
Details
- Language :
- English
- ISSN :
- 20771312
- Volume :
- 12
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Marine Science and Engineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3688ca8aeed742288ff29f32bd86b00b
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/jmse12071130