Back to Search
Start Over
Enhanced Bioethanol Production from Industrial Xylose Residue Using Efficient Delignification
- Source :
- BioResources, Vol 11, Iss 3, Pp 7551-7565 (2016)
- Publication Year :
- 2016
- Publisher :
- North Carolina State University, 2016.
-
Abstract
- Xylose residue (XR), the abundant industrial residue from commercial xylose production, was delignified using alkali as a substrate for ethanol production via simultaneous saccharification and fermentation (SSF). It was found that pretreatment with 1.5% (w/v) NaOH at 140 °C for 1.5 h was optimal for delignification efficiency (72.2%) and low cellulose loss (7.1%). The physical changes in samples after alkaline pretreatment were characterized for crystallinity and imaged using scanning electron microscopy (SEM), which demonstrated that the surface of samples became coarser with lignin removal. There were rather significant changes in cellulose crystallinity. The widespread accessibility of cellulose in XR favored enzymatic hydrolysis and achieved considerable bioconversion (98.8% with 15 PFU/g substrate). The maximum for ethanol concentration using SSF bioconversion reached 16.3 g/L, which was about four times more than that of the untreated sample. XR treated using the processes of alkaline pretreatment and SSF was an excellent substrate for bioconversion.
Details
- Language :
- English
- ISSN :
- 19302126
- Volume :
- 11
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- BioResources
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.36334625890b4f91a88e286abf278f75
- Document Type :
- article
- Full Text :
- https://doi.org/10.15376/biores.11.3.7551-7565