Back to Search Start Over

Enhanced Bioethanol Production from Industrial Xylose Residue Using Efficient Delignification

Authors :
Tian Zhou
Liming Zhang
Hong Zhao
Feng Xu
Guihua Yang
Source :
BioResources, Vol 11, Iss 3, Pp 7551-7565 (2016)
Publication Year :
2016
Publisher :
North Carolina State University, 2016.

Abstract

Xylose residue (XR), the abundant industrial residue from commercial xylose production, was delignified using alkali as a substrate for ethanol production via simultaneous saccharification and fermentation (SSF). It was found that pretreatment with 1.5% (w/v) NaOH at 140 °C for 1.5 h was optimal for delignification efficiency (72.2%) and low cellulose loss (7.1%). The physical changes in samples after alkaline pretreatment were characterized for crystallinity and imaged using scanning electron microscopy (SEM), which demonstrated that the surface of samples became coarser with lignin removal. There were rather significant changes in cellulose crystallinity. The widespread accessibility of cellulose in XR favored enzymatic hydrolysis and achieved considerable bioconversion (98.8% with 15 PFU/g substrate). The maximum for ethanol concentration using SSF bioconversion reached 16.3 g/L, which was about four times more than that of the untreated sample. XR treated using the processes of alkaline pretreatment and SSF was an excellent substrate for bioconversion.

Details

Language :
English
ISSN :
19302126
Volume :
11
Issue :
3
Database :
Directory of Open Access Journals
Journal :
BioResources
Publication Type :
Academic Journal
Accession number :
edsdoj.36334625890b4f91a88e286abf278f75
Document Type :
article
Full Text :
https://doi.org/10.15376/biores.11.3.7551-7565