Back to Search Start Over

Corrosion Inhibition in CO2-Saturated Brine by Nd3+ Ions

Authors :
Jorge Canto
Roberto Ademar Rodríguez-Díaz
Lorenzo Martinez Martinez-de-la-Escalera
Adrian Neri
Jesus Porcayo-Calderon
Source :
Molecules, Vol 28, Iss 18, p 6593 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

This study reports the use of an inorganic corrosion inhibitor to mitigate dissolved CO2-induced corrosion. Using electrochemical techniques (polarization curves, open circuit potential, polarization resistance, and electrochemical impedance), the effect of adding Nd3+ ions on the corrosion resistance of X52 steel immersed in CO2-saturated brine at 20 °C and 60 °C was evaluated. The polarization curves showed that the Icorr values tend to decrease with increasing Nd3+ ion concentration, up to the optimal inhibition concentration, and that the corrosion potential increases at nobler values. Open circuit potential measurements showed a large increase in potential values immediately after the addition of the Nd3+ ions. Similarly, polarization resistance measurements showed similar trends. It was observed that regardless of temperature, Nd3+ ions can reduce the corrosion rate by more than 97% at doses as low as 0.001 M. Electrochemical impedance measurements confirmed the formation of a protective layer on the steel surface, which caused an increase in the magnitude of the impedance module and phase angle, which indicates an increase in the resistance to charge transfer and capacitive properties of the metallic surface. The characterization of the metallic surface showed that the protective layer was formed by Nd carbonates, whose formation was due to a CO2 capture process.

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
18
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.363320089e9246939bb844e1f8269eed
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules28186593