Back to Search
Start Over
A modified particle swarm optimization algorithm based on dynamic learning factors and sharing method(基于动态因子和共享适应度的改进粒子群算法)
- Source :
- Zhejiang Daxue xuebao. Lixue ban, Vol 43, Iss 6, Pp 696-700 (2016)
- Publication Year :
- 2016
- Publisher :
- Zhejiang University Press, 2016.
-
Abstract
- 为提高粒子群算法的收敛速度和优化性能,避免陷入局部最优,提出了一种基于动态学习因子和共享适应度函数的改进粒子群算法.在惯性权重w随着迭代次数非线性减少而动态调整学习因子的基础上,引入共享适应度函数.当算法未达到终止条件而收敛时,利用粒子和最优解间距离挑选一批粒子重新初始化形成新群体,并用共享适应度函数对新群体进行评价,新旧2个群体分别追随自己的局部最优解直至迭代结束.对4个典型多峰复杂函数的测试结果表明,该改进算法不仅加快了寻得最优解的速度,而且提高了粒子群算法全局收敛的性能.
- Subjects :
- 动态
学习因子
共享适应度
粒子群算法
Electronic computers. Computer science
QA75.5-76.95
Physics
QC1-999
Subjects
Details
- Language :
- Chinese
- ISSN :
- 10089497
- Volume :
- 43
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Zhejiang Daxue xuebao. Lixue ban
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.362d80ad809f4f7ba41aada92cb40b3b
- Document Type :
- article
- Full Text :
- https://doi.org/10.3785/j.issn.1008-9497.2016.06.014