Back to Search Start Over

Downregulation of miR-192 Alleviates Oxidative Stress-Induced Porcine Granulosa Cell Injury by Directly Targeting Acvr2a

Authors :
Jiaqing Zhang
Qiaoling Ren
Junfeng Chen
Lingyan Lv
Jing Wang
Ming Shen
Baosong Xing
Xianwei Wang
Source :
Cells, Vol 11, Iss 15, p 2362 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Follicular atresia is primarily caused by breakdown to granulosa cells (GCs) due to oxidative stress (OS). MicroRNAs (miRNAs) elicit a defense response against environmental stresses, such as OS, by acting as gene-expression regulators. However, the association between miRNA expression and OS in porcine GCs (PGCs) is unclear. Here, we examined the impact of H2O2-mediated OS in PGCs through miRNA-Seq. We identified 22 (14 upregulated and 8 downregulated) and 33 (19 upregulated and 14 downregulated) differentially expressed miRNAs (DEmiRNAs) at 100 μM and 300 μM H2O2, respectively, compared with the control group. Among the DEmiRNAs, mi-192 was most induced by H2O2-mediated OS, and the downregulation of miR-192 alleviated PGC oxidative injury. The dual-luciferase reporter assay results revealed that miR-192 directly targeted Acvr2a. The Acvr2a level was found to be remarkably decreased after OS. Furthermore, grape seed procyanidin B2 (GSPB2) treatment significantly reduced the H2O2-induced upregulation of miR-192, and decreased PGC apoptosis and oxidative damage. Meanwhile, GSPB2 prevented an H2O2-induced increase in caspase-3 activity, which was enhanced by the application of the miR-192 inhibitor. These results indicate that GSPB2 protects against PGC oxidative injury via the downregulation of miR-192, the upregulation of Acvr2a expression, and the suppression of the caspase-3 apoptotic signaling pathway.

Details

Language :
English
ISSN :
11152362 and 20734409
Volume :
11
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
edsdoj.3594b58bdf354f6b99cfe7dd685420ad
Document Type :
article
Full Text :
https://doi.org/10.3390/cells11152362