Back to Search Start Over

Heat Acclimatization Protects the Left Ventricle from Increased Diastolic Chamber Stiffness Immediately after Coronary Artery Bypass Surgery: A Lesson from 30 Years of Studies on Heat Acclimation Mediated Cross Tolerance

Authors :
Arthur Pollak
Gideon Merin
Michal Horowitz
Mara Shochina
Dan Gilon
Yonathan Hasin
Source :
Frontiers in Physiology, Vol 8 (2017)
Publication Year :
2017
Publisher :
Frontiers Media S.A., 2017.

Abstract

During the period of 1986–1997 the first 4 publications on the mechanical and metabolic properties of heat acclimated rat's heart were published. The outcome of these studies implied that heat acclimation, sedentary as well as combined with exercise training, confers long lasting protection against ischemic/reperfusion insult. These results promoted a clinical study on patients with coronary artery disease scheduled for elective coronary artery bypass operations aiming to elucidate whether exploitation of environmental stress can be translated into human benefits by improving physiological recovery. During the 1998 study, immediate-post operative chamber stiffness was assessed in patients acclimatized to heat and low intensity training in the desert (spring in the Dead Sea, 17–33°C) vs. patients in colder weather (spring in non-desert areas, 6–19°C) via echocardiogram acquisition simultaneous with left atrial pressure measurement during fast intravascular fluid bolus administration. We showed that patients undergoing “heat acclimatization combined with exercise training” were less susceptible to ischemic injury, therefore expressing less diastolic dysfunction after cardiopulmonary bypass compared to non-acclimatized patients. This was the first clinical translational study on cardiac patients, while exploiting environmental harsh conditions for human benefits. The original experimental data are described and discussed in view of the past as well as the present knowledge of the protective mechanisms induced by Heat Acclimation Mediated Cross-tolerance.

Details

Language :
English
ISSN :
1664042X
Volume :
8
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
edsdoj.3594b4d882654cf08b0c8fc9d7f68116
Document Type :
article
Full Text :
https://doi.org/10.3389/fphys.2017.01022