Back to Search Start Over

Corrosion-resistant cobalt phosphide electrocatalysts for salinity tolerance hydrogen evolution

Authors :
Xinwu Xu
Yang Lu
Junqin Shi
Xiaoyu Hao
Zelin Ma
Ke Yang
Tianyi Zhang
Chan Li
Dina Zhang
Xiaolei Huang
Yibo He
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Seawater electrolysis is a viable method for producing hydrogen on a large scale and low-cost. However, the catalyst activity during the seawater splitting process will dramatically degrade as salt concentrations increasing. Herein, CoP is discovered that could reject chloride ions far from catalyst in electrolyte based on molecular dynamic simulation. Thus, a binder-free electrode is designed and constructed by in-situ growth of homogeneous CoP on rGO nanosheets wrapped around the surface of Ti fiber felt for seawater splitting. As expected, the as-obtained CoP/rGO@Ti electrode exhibits good catalytic activity and stability in alkaline electrolyte. Especially, benefitting from the highly effective repulsive Cl− intrinsic characteristic of CoP, the catalyst maintains good catalytic performance with saturated salt concentration, and the overpotential increasing is less than 28 mV at 10 mA cm−2 from 0 M to saturated NaCl in electrolyte. Furthermore, the catalyst for seawater splitting performs superior corrosion-resistance with a low solubility of 0.04%. This work sheds fresh light into the development of efficient HER catalysts for salinity tolerance hydrogen evolution.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.359414124ee94d38bb22812fee81761a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-43459-w