Back to Search
Start Over
Extreme terahertz magnon multiplication induced by resonant magnetic pulse pairs
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-9 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Nonlinear interactions of spin-waves and their quanta, magnons, have emerged as prominent candidates for interference-based technology, ranging from quantum transduction to antiferromagnetic spintronics. Yet magnon multiplication in the terahertz (THz) spectral region represents a major challenge. Intense, resonant magnetic fields from THz pulse-pairs with controllable phases and amplitudes enable high order THz magnon multiplication, distinct from non-resonant nonlinearities such as the high harmonic generation by below-band gap electric fields. Here, we demonstrate exceptionally high-order THz nonlinear magnonics. It manifests as 7th-order spin-wave-mixing and 6th harmonic magnon generation in an antiferromagnetic orthoferrite. We use THz two-dimensional coherent spectroscopy to achieve high-sensitivity detection of nonlinear magnon interactions up to six-magnon quanta in strongly-driven many-magnon correlated states. The high-order magnon multiplication, supported by classical and quantum spin simulations, elucidates the significance of four-fold magnetic anisotropy and Dzyaloshinskii-Moriya symmetry breaking. Moreover, our results shed light on the potential quantum fluctuation properties inherent in nonlinear magnons.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.35615f54c6bf4788a8d3578a1dc8d839
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-47471-6