Back to Search
Start Over
Low-Frequency Dual-Band Sound Absorption by Ultrathin Planar Wall Embedded With Multiple-Cavity Resonators
- Source :
- Frontiers in Physics, Vol 10 (2022)
- Publication Year :
- 2022
- Publisher :
- Frontiers Media S.A., 2022.
-
Abstract
- We report the numerical and experimental realization of a type of ultrathin planar wall with low-frequency dual-band sound absorption. The proposed planar wall is constructed by a periodic subwavelength unit cell (with a thickness of λ/19) which consists of two different multiple-cavity resonators embedded into a plate structure with a groove. The sound absorption of the wall exists in two working bands (IandII) below 600 Hz which are created by two different mechanisms. In addition to the band I created by a conventional resonance coupling of the two multiple-cavity resonators, it is worth noting that the band II is realized by a mutual resonance coupling between the resonators and groove structure. The fractional bandwidths of the bands I and II can reach about 34.1 and 10.4%, respectively. Furthermore, the application of the proposed ultrathin planar wall in the design of a barrier-free anechoic room with omnidirectional low-frequency dual-band sound absorption is further discussed in detail. The proposed planar wall has the advantages of ultrathin planar structure and omnidirectional low-frequency dual-band sound absorption, which provides diverse routes to design advanced sound-absorption structures in noise control and architectural acoustics.
Details
- Language :
- English
- ISSN :
- 2296424X
- Volume :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3550fd8d08b44e89bd62fef53447324b
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fphy.2022.911711