Back to Search Start Over

Developing Preventative Strategies to Mitigate Thermal Runaway in NMC532-Graphite Cylindrical Cells Using Forensic Simulations

Authors :
Justin Holloway
Muinuddin Maharun
Irma Houmadi
Guillaume Remy
Louis Piper
Mark A. Williams
Melanie J. Loveridge
Source :
Batteries, Vol 10, Iss 3, p 104 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The ubiquitous deployment of Li-ion batteries (LIBs) in more demanding applications has reinforced the need to understand the root causes of thermal runaway. Herein, we perform a forensic simulation of a real-case failure scenario, using localised heating of Li(Ni0.5Mn0.3Co0.2)O2 versus graphite 18650 cylindrical cells. This study determined the localised temperatures that would lead to venting and thermal runaway of these cells, as well as correlating the gases produced as a function of the degradation pathway. Catastrophic failure, involving melting (with internal cell temperatures exceeding 1085 °C), deformation and ejection of the cell componentry, was induced by locally applying 200 °C and 250 °C to a fully charged cell. Conversely, catastrophic failure was not observed when the same temperatures were applied to the cells at a lower state of charge (SOC). This work highlights the importance of SOC, chemistry and heat in driving the thermal failure mode of Ni-rich LIB cells, allowing for a better understanding of battery safety and the associated design improvements.

Details

Language :
English
ISSN :
23130105
Volume :
10
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Batteries
Publication Type :
Academic Journal
Accession number :
edsdoj.3528e811ef5947fc939fa74d36c62ecd
Document Type :
article
Full Text :
https://doi.org/10.3390/batteries10030104