Back to Search Start Over

Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain

Authors :
Shuang Wang
Song Wang
Quan Li
Xiaoli Zhao
Jianyu Zhu
Source :
Materials, Vol 11, Iss 10, p 2036 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

We proposed and fabricated a flexible, planar, U-shape-modified structure metamaterial (MM) that was composed of two metallic pattern layers separated by a polyimide layer, where each metallic pattern layer consists of two U-shaped split ring resonators (USRRs). The coupling effect between the two USRRs in the same metallic layer was vital to the formation of dual toroidal dipole (TD) resonances. The measured and simulated results showed that both low quality factor (Q) (~1.82) and high Q (~10.31) TD resonances were acquired synchronously at two different frequencies in the MMs by adjusting the distance between the two coplanar USRRs. With the interaction of the USRRs, the energy levels of the USRRs were split into inductance-capacitance (LC)-induced TD resonance at low frequency and dipole-induced TD resonance at high frequency. Thus, the electric multipole interaction played an important role in determining the energy level of the TD resonance. The better strength of the high frequency TD resonance can be confined to an electromagnetic field inside a smaller circular region, and thus, a higher Q was obtained. In order to investigate the TD mechanism more in depth, the power of the electric dipole, magnetic dipole, electric circular dipole, and TD were quantitatively calculated. Dual TD MMs on a freestanding substrate will have potential applications in functional terahertz devices for practical applications.

Details

Language :
English
ISSN :
19961944
Volume :
11
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.351a5dfd84b5456ab48b6c536ba01370
Document Type :
article
Full Text :
https://doi.org/10.3390/ma11102036