Back to Search Start Over

Single-cell phenotypes revealed as a key biomarker in bacterial–fungal interactions: a case study of Staphylococcus and Malassezia

Authors :
Eun Sun Lyou
Min Sung Kim
Soo Bin Kim
MinJi Park
Kyong-Dong Kim
Won Hee Jung
Tae Kwon Lee
Source :
Microbiology Spectrum, Vol 11, Iss 6 (2023)
Publication Year :
2023
Publisher :
American Society for Microbiology, 2023.

Abstract

ABSTRACT Microbial interactions are determined by competition, cooperation, and inaction, depending on the transcriptional response to the metabolites secreted by each other. The consequence of these interactions is reflected in the cell phenotype by the composition of cell materials, including lipids, nucleotides, and proteins. We studied the phenotypic plasticity of single cells involved in microbial interactions using Raman spectroscopy and evaluated the types of interactions by linking phenotypes to transcriptional profiles. We used a membrane-based co-culture system to induce chemical interactions between skin-dominant bacteria and fungi, Staphylococcus and Malassezia. Staphylococcus species exhibited an amensalism interaction with Malassezia based on growth and cell viability. Malassezia co-cultured with S. epidermidis and S. aureus resulted in significant changes in the Raman spectra of nucleic acids and proteins in the Raman phenotypes, respectively. The observed differences in phenotypes during co-culture with Malassezia were significantly associated with changes in transcriptomic profiles, which demonstrated variations in the defense/resistance and biofilm-formation mechanisms of S. epidermidis, whereas no meaningful changes were observed for the transcriptome of S. aureus. These approaches provide a robust, simple, and reproducible method for comprehending bacterial–fungal interactions. IMPORTANCE Evaluating bacterial–fungal interactions is important for understanding ecological functions in a natural habitat. Many studies have defined bacterial–fungal interactions according to changes in growth rates when co-cultivated. However, the current literature lacks detailed studies on phenotypic changes in single cells associated with transcriptomic profiles to understand the bacterial-fungal interactions. In our study, we measured the single-cell phenotypes of bacteria co-cultivated with fungi using Raman spectroscopy with its transcriptomic profiles and determined the consequence of these interactions in detail. This rapid and reliable phenotyping approach has the potential to provide new insights regarding bacterial–fungal interactions.

Details

Language :
English
ISSN :
21650497
Volume :
11
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Microbiology Spectrum
Publication Type :
Academic Journal
Accession number :
edsdoj.34fe40660eb645f2a3ec6030b74f362f
Document Type :
article
Full Text :
https://doi.org/10.1128/spectrum.00437-23