Back to Search Start Over

Neurons with Cat’s Eyes: A Synthetic Strain of α-Synuclein Fibrils Seeding Neuronal Intranuclear Inclusions

Authors :
Francesca De Giorgi
Muhammed Bilal Abdul-Shukkoor
Marianna Kashyrina
Leslie-Ann Largitte
Francesco De Nuccio
Brice Kauffmann
Alons Lends
Florent Laferrière
Sébastien Bonhommeau
Dario Domenico Lofrumento
Luc Bousset
Erwan Bezard
Thierry Buffeteau
Antoine Loquet
François Ichas
Source :
Biomolecules, Vol 12, Iss 3, p 436 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The distinct neuropathological features of the different α-Synucleinopathies, as well as the diversity of the α-Synuclein (α-Syn) intracellular inclusion bodies observed in post mortem brain sections, are thought to reflect the strain diversity characterizing invasive α-Syn amyloids. However, this “one strain, one disease” view is still hypothetical, and to date, a possible disease-specific contribution of non-amyloid factors has not been ruled out. In Multiple System Atrophy (MSA), the buildup of α-Syn inclusions in oligodendrocytes seems to result from the terminal storage of α-Syn amyloid aggregates first pre-assembled in neurons. This assembly occurs at the level of neuronal cytoplasmic inclusions, and even earlier, within neuronal intranuclear inclusions (NIIs). Intriguingly, α-Syn NIIs are never observed in α-Synucleinopathies other than MSA, suggesting that these inclusions originate (i) from the unique molecular properties of the α-Syn fibril strains encountered in this disease, or alternatively, (ii) from other factors specifically dysregulated in MSA and driving the intranuclear fibrillization of α-Syn. We report the isolation and structural characterization of a synthetic human α-Syn fibril strain uniquely capable of seeding α-Syn fibrillization inside the nuclear compartment. In primary mouse cortical neurons, this strain provokes the buildup of NIIs with a remarkable morphology reminiscent of cat’s eye marbles (see video abstract). These α-Syn inclusions form giant patterns made of one, two, or three lentiform beams that span the whole intranuclear volume, pushing apart the chromatin. The input fibrils are no longer detectable inside the NIIs, where they become dominated by the aggregation of endogenous α-Syn. In addition to its phosphorylation at S129, α-Syn forming the NIIs acquires an epitope antibody reactivity profile that indicates its organization into fibrils, and is associated with the classical markers of α-Syn pathology p62 and ubiquitin. NIIs are also observed in vivo after intracerebral injection of the fibril strain in mice. Our data thus show that the ability to seed NIIs is a strain property that is integrally encoded in the fibril supramolecular architecture. Upstream alterations of cellular mechanisms are not required. In contrast to the lentiform TDP-43 NIIs, which are observed in certain frontotemporal dementias and which are conditional upon GRN or VCP mutations, our data support the hypothesis that the presence of α-Syn NIIs in MSA is instead purely amyloid-strain-dependent.

Details

Language :
English
ISSN :
2218273X
Volume :
12
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Biomolecules
Publication Type :
Academic Journal
Accession number :
edsdoj.34f9e9e221c14a529714a48aa810e239
Document Type :
article
Full Text :
https://doi.org/10.3390/biom12030436